Pl
e B

NACA ‘“TM No. 1196

T98L

»

TECHNICAL MEMORANDUM
No. 1196

NONSTATIONARY GAS FLOW IN THIN PIPES
OF VARIABLE CROSS SECTION

By G. Guderley

Translation of ZWB, Forschungsbericht No, 1744, October 1942

Washington
December 1948 A

WN ‘g4vy Auvuan yogy

i




’ TECH LIBRARY KAFB, NM

AURTRGERRERN

.. Duuzed
HATIONAL ADVISORY COMMITIEE FOR ABRONAUTICS

TECHNIC AT, MEMORANDUM NO. 1196

NONSTATTONARY GAS FIOW IN THIN PITES
OF VARIABIE CROSS SECTTION®

By G. Guderley

LBSIRICT

Characteristic methods for nonstationary flows have been
published only for the special case of the isentroplc flow up
until the present, although they are appliceble in varlous
places to more difficult questioms, too. The present report-
derives the characteristic method for the flows which depend
only on the position coordinates end the time. At the same time
the treatment of compression shocks is shown. To simplify the
application numerous oxemples are worked oub.

*'"Niochtstationfire Gasstrimungen in dinnen Rohren ver&nderlichen
Querschnitts.” Zentrale fiir wissenscheftliches Berichtswesen der
Tuftfahrtforachung des Generalluftzeugmeisters (ZWB) Berlin-Adlershof,
Forechungsbericht Nr. 1744, Brawnschwelg, Oct. 22, 1942
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1. INTRODUCTION

In papers by ¥. Schultz-Grunow and R. Sa.uerl methods have
been developed recently for completely solving the problem of
nonstationary isentroplc gas flows in a pipe of constent cross
section. An expanded view of the problem is the basis for the
present report. Flows are-cansidered, which likewise depend only
on the position coordinate; howsver, the cross sectlon.of the tube
need no longer be constant and the entropy may vary from particle to
particle. The method of solution applied here has been discovered
almost simultaneocusly in several places, by Adam Schmidt, W, D&ring,
and F. Pfeiffer, among others.

The application of the characteristic method 1s possible
without & previous substantial knowledge of mathematics. Corre-
spondingly, if a derivation was desired too, ome could be had
which 414 not mske any special mathematical demands on the reader.
As a model, the Busemann derivation of the characteristic method -

for two—dimensional stationary gas flows might possibly doa. It is
actually possible to apply this derivatlon immedlately to the

‘schultz-Grunow, F.: Nichtstationfire eindimsnsionele Gas-
bewegung. Forechung auf dem Geblet des Ingeniesurwesens Bd. 13’
(1942) pp. 125 to 13k. Saver, R.: Charakteristikenverfahren fior die
eindimensionale instationdre Gasstromung, Ingenieur-Archiv,

XIIT Vol. (19L42) pp. 79 to 89. Vorbereitende Untersuchungen sowie
Anwendungen finden sich in den Arbeiten von H. Pfriem. Zur Theoris
ebener Druckwellen mit steiler Front Akustische Zeitschrifit

Jehrg. 6 (1941) part 4. — Die ebene ungsdémpfte Druckwelle grosser
Schwingungsweite, Forschung Vol. 12 (19%) pp. 51 to 6k -
Reflexionsgesetze fiir ebene Druckwellen grosser Schwingungsweite,
Forschung Vol. 12 (19k1) pp. 244 to 256 = Zur gegenseitigen
Uberlagerung ungedsmpfter ebener Gasswellen grosser Schwingungswelte,
Akustlsche Zelischrift Jahrg. 7 (19h2) part 2 — Zur Frage der
oberen Grenze von Geschossgeschwindigkeiten Zeltschrift f. techn.
Physik 22 (19%1) pp. 255 to 260. 'Eine weitere Anwendung findet
sich bel G, Damkchler und A. Schmidt, Gasdynemische Beitrége zur
Auswertung von Flasmmenversuchen jin Rohrstrecken. Zeitschrift

fiir Blektrotechnik Vol. b7 (1941) pp. 547 to 567.

2Busemann, 4.:; Beiltrag Gasiynamik in Handbuch der Experimental-
physik (Wien-Harms) Bd. 4, Teil 1, p. L2l end adjoining pages.
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isentropic nonstationary flow in & pipe of constant cross section
and from this by means of some supplementary physical concepts
succeed In getting a treatment of flows in a tube of variable cross
gection; this is the course which had been teken, originally. In
comparison to the mathematical theory of characteristics, howsver,
these considerations operate with a lack of clarity sufficlent so
that the mathematicel theory - Tor the engineer too - can be
represented as the best approach to the characteristics msthod.

Conslderations necessary for the present problem are now
brought forward from the characteristics theory”. As a result,
equations for the dirsctions of the characteristics as well as
conditions which must be satisfled along the characteristics ars
obtained. Proceeding from these rslations, the next sectioms
develop the actual method of computetion. WNext, the characteristics
method for the case which is familier by now, that of isentropic
flows In & pipe of constant cross section,is deduced again and
the transformations eppearing there are used +to simplify the
computation in complicated cases, too. Since this is not always
possible, the most general form of the characteristics method is
shown in a later section. Aftsr this, the formulas obtained for
the special case of an 1deal gas with constant specific heat are
simplified end the consideration of boundery conditione explained.
The remaining sections deal with calculation of compression shocks;
the known relations which connect the phase befors and bshind e
compresalion shock with one another are set forth in & convenient’
form for the present problems and with that the calculation of a
compression shock in a flow is carried out.

The theory is 1llustrated with suiteble exsmples treated in
detall.. In that regard, it seemsd adventagsous to avoid definite
problems of technical interest, in doing so gaining the possibility
of working out examples umder very gemeral assumptions without
excesslve effort. It 1s hoped that, nevertheless, the application
of the method to physical problems offers no additional difficulties
worth mentioning inasmuch as the earlier publications contain such
applications. The author oxpresses his thanks to Dr. Hens Lehmann
for working out the sxamplss.

aC:csmpa.re Courant-Hilbert, "Methoden der mathematischen Physik II",
P 291, Guderley follows the representation given by H. Seifert at the
same 1institute for Ges Dynamics in lectures.
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2. BASIC EQUATICNS

Conelder nonstationary, perfect gas flows in a plpe with a
orose—~sgection that varies in space end time®* in the neighborhood
of the flow tube; that is, it is assumed that the velocity amd
the phase over a cross section of the pipe may be comsidered as
sufficiently constent. In general, this sssumption is Justifiable
only 1f the thickness of the tube, relative to its length, changes
slowly enough. Only for flows which have as surfaces of constent
phese parallel plenes, coaxial cylinders or concentric spheres
need this limitation be ignored. These flows with pleane, cylindrical,
or spherical wave propagation are included as special cases In the
present problem.

To stress the reletionship to stationary two~diuwensional flows,
let the exis of the pipe be vertical, the position coordinate be y,
the time be + eand plotted horizontally In this yt-dlegrem the
flows ere investigeted. (Compare fig. 1.)

Let

P preasure .
8 entropy per wit mess

p density

v veloclty

F = F(yt) the croes section of the pipe, let F be given

In a region free of compression shocks, the flow 1s described by

the dependency of the density on pressure and entropy, the Newtonian
principle, the equation of comntinuilty snd the statement that the
entropy of a pgarticle is preserved, as follows:

p = ols,D) - (1)
., + ¥ -
p Oy By ot © (2)
2., m - |
vS pa *§ e + p 9IF at 0 (3)
g ®

M'Problems with ‘time veriations in the cross-sectionel ares
are rare; they were included, since they can be handled without
additional difficulty.
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In this the derivatives of p should be replaced by the derivaetives
of p and s, for this purpose

1
5p = ;51 (5)

is introduced. Therefore, instead of equation (3)

7 3 pd, W, 1, %P, _AsF_  AnF _,
a_2§§+vas y+pg;y"+aeat+5sat+pv8y+p}'b (38)

is obtained.

3. FROM THE THEORY OF CHARACTERISTICS

In regard to the systsm of equations (2), (3a}, and (L), the
femiliar question is raised from the theory of -haracteristics. In
a region of the yt-plane let the solution of this system of
equations and 1ts derivations be finite throughout. On a curve C
placed in this renge let the values p, v, and & which correspond
to this solution end, thersfore, ths appropriate derivatives taken
in the direction of C bs kmown. The guestion is asked whether the
derivatives in other directions mey be commuted with the aid of the
system of differsntial equations, and under what conditions. To
enswar this, a curvilinear coordinate system &,n 1s introducsi
in vhich a curve & = comstant coincides with C (fig. 1). All the
derivatives with respect to 7 along this curve & .= constant are
given, .thé derivatives with respect to & ars sought. This trans-
formation is carried out and terms are arranged sc that the unknown
derivatives with respsct to & are on the left and only known
quentities are on the right. That is
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With this form (2), (3(a)), =nd (%) are obtained

. ~
21, ét(v§§+;5§=_§g,l_an av( o, an
o p oy JE dy ot on p 9y on\ By Bt
% 1 L3 az 3s ap< 3% , oF)
3% &2 By T, SE Y TSt
_ (6)

- égl Bn_’_éﬂ_ _av on stan Bn dp v BZnF_p JlnF >
"I 2\ oy ot/ on P&y T o ay St/ 3 P75y P ee

20f, 22 ég)g_ée/;é_q,,én‘)

a§ " dy  at 3N \ dy ot

A linear system of equatlons is obtained for the unknowns .g_g., _glg y
%,‘ the unknowns, themselves, are obteined by Cramer's rule as
-~

the quotient of two determinents. The determinant In the denominator
1s the same for all uwnknowns. It elweys glves & single-valued
solution for the system of equations, if the determinant in the
denominator is different from O. In the other case with a determinent
in the denominator that venishes, 1t is & necesgsary condition for the
exlstence of solutione that remain finilte +that the determinants in
the numerator also venish. In thls case, however, the solution of
the system of equations is only defined over any portion of the
solution of the homogenous system. In applicatlon to the system of
equations (6) eignifies the following: The dsterminent in the
denominator is formed from the ccefficients of the unknowns.
Consldering a fixed point on C, at which bp, end 8__ars
known by assumption, the coefficients depend on é§ angd _§ that

and

is the direction of C. If C 18 so dirscted that the determinant

In the denominator does not veanish enywhers, the _g_l';. etc. are
S
computable as single valued.

Of greater interesit for our considerations e the other case,
namely, that the determinant in the denominator is zero at every
point of C. Such a curve ls termed a characteristic. Because of
the assumption of finits derivetives the determinents in the
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numerator also vanish. Relations are obtained thesreby, in which the
right side of (6) and, therefore, the derivatives of p, v, znd s
along C appear as essen'bial Ingredients. These relations represent
the starting point of the graphical numerical method of solution.

Since the solutions of & linear system of equations are no
longer single valued for vanishing numsrator and dencminator
determinents, the pursult of a given solution of a charscteristic
is possible 1n various ways. These different possibilities asctually
appear on chenging the initial and boundary conditions.

L., THE DIRECTIONS OF THE CHARACTERISTICS

To £ind the direscticms for which the curve & = constent is a

characterlstic, the determinent in the dencminator must be set equal
to zero in the solutions of the system of squatiocns (6).

1 B:a B§ o
s 3y
1 g Q_é §§ ép §§_ S =0
& (v y N at) °¥ 'BSG dy " S5
v 5,95
° ° st 8’0)
This glves
a§ \ 'aé -1 ..a_é.; é_. =0
ay ot / ac a ot -
Frcm thisg are obtalned the conditions
3% . dE '
v gy' + 5t = o (7)

or

(v+a)g_$+§%=o ._ (8&).
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or

(v - a) g% + g% =0 (8b)

The slope -,of any curve € = constant is 'given by -

3

&y 9%

cat g
=

From (7) and (8), together with this, the slopes of the cherac-
terlstics are o . S .

%%.’ v (9)
or '
& =v+a ' (10a)
at - :
or
& - v . a (16b)
at _

The characteristics defined by (9) are path-time curves for the
individual gas perticle; they might be termed life lines of the
particles. According to (10), veloclitles are dstermined from the
slope of the other characteristics, which differ from the veloclty
of the perticles by ¥a. For stationery flows tho Mach waves
correspond to these last characteristics; this designation will be
adopted. Therefore, let Mach waves of the first femily be those
which spread out with the velocity v + a and Mach waves of the
second femlly be associated with the velocity v - a.

5, THE CONSISTENCY CCNDITIONS ON THE CHARACTERISTICS

As shown In section 3, along the characteristics, certaln
conditions must be compllied with by the derivatives which result
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from the venishing of the determinent in the numerator. These
conditions are called consistency conditions, for p, v, and s
are subject to them, if the derivatives with respect to & are

to remain finite. If the right side of (6) is deaignated R,, Rp,

and Rq in sequence, then the following is obtaingd for the
de tern t in the numerator of the quotient for @R,:

S
3¢ . 3%
Rl 1;r§.§+E 0
/. o
R & 3 1y o8, &Y
2 5 s\ & "5l (11)
dE . 3&)
3 ° (ﬁja?"a'z});

This detsrminent must vanlsh to give the directions of the charac-
teristics. Substituting (7) gives

Rl 0 0
dy 0{=0
R 0 0
3

According to this the determinant (11} vanishes by itself. With
' (8a), that 1s, for a Mach wave 1

' L
Rl aL5§ o
35 3 o &1 .
R2 . pg; -sas.y. 0
- 08
Ry o) e £

is obtalned, or
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N2 L =
(g%_) [-pa.’Rl - &R, + %;aaQR3 =0

In thils, g%. is certainly different from zsro, as long ag8 v &and a

are finite and gred & # 0. As the condition for <he Mach wave 1 is
obtained : :

-0 - &Ry + & LRy =0 (12a)

The consistency conditions for the Mach waves 2 1g, if a 1is
replaced by -a

-oR, + eRp - & 3533 -0 (12b)

A condition for the 1ifs line 1g obtalned 1f the vanishing of the
determinant in the numerator in the yuotient for gg to be got
=t

from (6) requires

138 (a§+a§\
=2 R
o dy N7 5’3/ 1
1 A& 3¢ & _
0 _ 0] ' Ra

For the Mach wave this equation is satisfied by 1tself, the condition
for the 1life line is

Ry = 0 (13)

The determinent in the numerator of g% could be investigated, toos

however, this would not give any new c&nsistancy condlitions.
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The values of Ri, By, &and R3 are still to be put in.
From (12a),

12p[™n 31 3 3 0 e 3L ey D10F  , uo®
& nL5§'(V+&)+at]+°FnL5§(V+a)+t_.f' -t

is obtained. The direction & along a Mach wave 1 is given by
+

“

(108); on that account

an _ & ay _on an
dt‘#%"Lﬁ'%(vJ'a)J'S{

is valid for it. With that the consistency condition for the Mach
wave 1 can be written in the form

- \

1 dp , av _ _ dwF , dmlfr}

&0 at ~ ab a<v =Sy st (1ke)
The consistency condition for a Mach wave 2 1is obtained, by
pubstituting -a for a

ap 4t 4t a<v Jy S5t (1)
From (13) fdr a 11Pfe line is obtained
ds
5y =0

This may be Integrated immedlately
8 = constant (15)

Naturally this comstent will differ from particle to particle, in
gensral. .
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6. FLOWS WITH CONSTANT ENTROPY AND UNIFORM PIPE CROSS SECTION

Equations (14), (15), (9), and (10) Just obtained are certainly
useful, fundementally, as & starting point of a characterlstlcs
method ~ in fact, there are ®xamples, where 1t is necessary to revert
-t them (comnare section 11); in most cases, however, there are
gt1ll other transformations suiteble. The direction in which to
proceed for these 1s obtalned if an attempt is made to derive the
characteristic method for lsentropic flows in a pipe of unifiorm
cross sectlon from equatioms (14) and (15) vroesibly in the form
applied by Schultz-Grunow. To emphasize the fundemental ideas, no
assumptions of any kind are made +iherein of the characteristlcs of
the flow medium.

On eccount of the hypothesis of constant entropy, equation (15)
satlsflies 1tself. In equations (14) the right sides are omitted
since it concerms a tube of wniform crosSs section. Further, on
account of the hypothesis of comstent entropy the state of the gas
is still dependent ae only one varisbls, perheps the pressure,
or the tempersture; the quantities appearing on the left side
smd a are accordingly functions of this varilaeble. It 1s possible,

thersfore, to consider the expression 8P as a differential. Let
pa

T  tempoerature

1  heat content (enthalpy)
8 éntropy

By the second mein theorem

Td.s:d.i-%d:p

From thils, on account of the hypothesis of constent entropy,

1n) . (a
p W4T 8T
With that, 1t follows thet

= -/di‘g aT
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W(T) = ;_."/n 1 /d‘i) at (17)

18 introduced in which a, 1s the sonic velocity of & comparison

phase which was added to meke W dimensionless. The phese of the
gas may be charascterized by W from W = W(T). It follows that

T = T(W) (18a)

Furthsr, it is valid that' _
p = p(T) = p(W) (18b)
a = a(T) = a(W) etc. (18c)

With the use of W equations (14) appear in the form

a, aw + dv

Q for a Mach wave 1

a, dW - dv =0 for a Méch wave 2

Bringing in

A=W+ (192)

H=W» XL (19v)
these last relations change to a form which may be integrated. This
gives

A = constent for Mach wave 1 (20=a)

p = constent for Mach wave 2 d (20b)

If the megnitudes of A and p  are known for a point of the yit-diagram,
the veloclty 1is thereby completely defined as woll ss the thermodynamic
phase. It is, to be exact,

Vo M- 2
a 2 (21p)
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and on account of equations (18)
(M + u) (222)

a{h + pn) (22p)

P

a

The next sections explaln this traneformation emd the application
of equations (20) to an example of an. ideal gas whose specific heat
is a function of temperature.

T TEERMODYNAMIC RELATIONS FOR AN IDFAL GAS WHOSE SPECIFIC

HEAT IS A FINCTION OF TEMPERATURE; COMPUTATION OF W

Let
'cp sﬁecific heat at constant pressure
Cy gpecific heat at constant volums
R gas constant.

For an ideal ges
B - RT (23)
P

Accofding to the second main theorem, 1f p end T are considered
as Indspendent variasbles

dp - L. dp (24)
Since ds 1s a perfect differential,

(1ai\ /;M__l_)
T OTA\T dp of

Accordingly, substituting p from (23), the following kmown fact'
is obtained

ol

5; =0
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that is

now

therefore

From (24) as a result

Introducing

glves

o

15

(25)

(26)

ééha)

(272)

(27p)

(28)

Considering c,(T) es known, p by (28) and p by (23),
ere glven as functions of T end s; the thermodynamic properties

of the medium cen be calculated in principal, therefore.
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quentity a is also defined by p and p. The computation of =&
is by all meens simpler if carried out in the following way.

According to (5)
1.
25

for which the entropy is to be kept comstant. For constant entropy
from (2he) -

ar . R dp

T Cp P
by differentiation from (23)

P p T

From the last two relations together with the familiar relation

P
is obtained
s
a(T) =/ R pr (29)
K cv

The relations discovered up until now describe the properties
of the gas end must always be known; it makes no difference which
varlation of the characteristic method is chosen for the celculation
of the flow. In contrast, the introduction of the fumctions W, X,
and p Berve only as preparation for carrying out of the charac-
teristice method in the form prssented in the preceding gection.
Next, to campute W. From {25) 1t follows

(%), -4

with (26)
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Setting the last eguation as well as (29) into (17) gives

r+u o1 [0 [y |
W = — = oo at . (30)
= ao( TO o RT

For the present case, 8 = constant = s (28) becomss

o
..T
[ e
Jp R T
0.
2 (7)) =e ' (28a)
oy .
‘o
Now the following can be formed ;
T = T(A + p)
& =a(d + u)
P =P\ +u)

Thess calculations were cerrisd out numerically for carbon
dioxide. The relation between the specific heat and tem'peratu.rc was

taken from Biitte  with the aid of these values (i - i) /ao ,
afe,, P, end ‘W can be computed from equatioms (26), (29), (272),
end (30) as functions of the temperature. (See figs. 2(a) and 2(b}.)

Plgure 3 shows a/a P, and T plotted as funcilons of
Mt o= 2W. .

8. THE CONSTRUCTICN OF THE FLOW FIELD

The following problem should be dealt with: Along & curve X
of the yt-diagram, which has at the most one point in common with
sach cheracteristic, let p/p, end v/a, be given (fig. 4). The
flow should be constructed for the following times as far as it is
defined by the portion of K given. Therefore, it 1s concerned
here with the computation of the part of the flow dafined by the
initial conditlons which by thz same evguments appear everywhsre.in
the interior, too. Before the comsiruction of ths :E‘low ca.n br= startec

Hutts, 27th editfon, Vol. 1, p. 48, table 5, Berlin 19&1
Wilhelm Ernast uwnd Sohn, publishers.
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the initial values p/po and v/a'o must be expressed in terms of

the verisbles % &and p. Since the entropy was asgumed constant,
p/p end P coincide. With the aid of the relation presented in

figure 3, between P emd A + p and equation {22b), A and p
may be ascertained without difficulties. Figure 4 shows un the right,
the yt- diagrangon the left, the dlagram of the assumed values p/po

and v/ao as wsll as those of the computedl quantities A and p as .
functions of ¥,

Proceeding from the individuel points of K if the network of
Mach waves had been brought in, the phase at each lattice point
wonld be determined thereby; according to (20) A\ is constant along
Mach wave 1, u along Mach wave 2, and on that account, equal to
the values at those veinte of X from which the Mach waves spread
out. By (21b) and (22) the phase is given by A and . To be
able o draw the netwvork of Mach vaves, -nly their directions are
sti1ll needed. These erc given at the latiice points by (10);

a/ao is & function of X +u in figure 3, v/ao 1s computed

as &_é_&.

The direction for the portion of & Mach wave between two lattice
points is approximated as the average value of the corresponding
directions at the lattice points.

The construction becomes especially simple if the Mach waves
are drawn for equidistent values of A end p. The directions
of +the Mach waves sppsaring can be computed beforehand and possibly
prepared in the form of table I. The interval between adjacent
values of A or p wase selected as 0.1, the slze of the interval
depsnds on the accuracy desired. In the table the upper column
headlngs and signs refer to Mach wave 1, the lower to Mach wave 2.
The numbers entered in the tablas represent the average values for
(v +a)/a, and (v - a)/a,. For Mach wave 1 for whichk A = 0.3
end which leads from a point with u = 0.2 %o a point with p = 0.1,
in the column with the heading X =0 3 the value is to be taken
from the row u = 1.5, that is, (v + a)/a, = 1.103.

In the flow dlegram the veluse of A valid there are entered
to the left of the lattice point and the values of ik to the
right. To determine, for example, the positlon of 'C from the
points A and B since the phase of C 1is given beforehand by
A=1.1 and u = 0.5 the average directlions of the Mach waves
(v +a)fa, = 1.422, (v - d)/a = -0.778 can be taken from table I

- .end dravn in the yt-@iagram. The auxlliary dlagram on the left in

e Y
-
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figure 4 cen be used for thim. There the direction of a Mach wave
for vhich (v + a)/a, = 0.8 is drewn in. Similar diagrams can

be used as aids fpor the following exauples, too. The portlioms of

the Mach wvave going out from K really require a special computation
since the averaps values of A or u for thsm do not agree, in
general, with the values of table I. The small deviation was
tolerable, however.

9. FLOWS WITH CONSTANT ENTROPY IN A PIPE OF VAKIABLE CROSS SECTICN

If the cross section of ths pipe ie not constant, the right side
of equations (14) from which it is necessary to start out, here too,
are preserved. With that, there 1s the possibility of underteking
that integration along the Mach waves which led to equations (20).
Nevertheless, the introduction of A and p still remains useful.
Setting

a | é%ﬁ@ + L OUE) _ 1
8 (Fo Yy &, of )- ’ . (31)
then

a | -

E.'E = 'aOM ( .523-)

is obtained as the consistency condition for Mach wave 1 and

du _ g
i a M (32p)

f~r Mach wvave 2.

The consistency conditions in “he form of (32) contain at any
given time the .differential of only ons of the unknown quentitles
A or u vwhile the differentials of both p amd v eppear in (1k)
alrsady. This implies an appreciable improvement in the numerical
calculation.

The construction of the flow rests on the fact that equations (32)
are considered different equations. Let Gp be the valus which a

quantity G assumes at the point A, AGpy the difference Gp. - Gp
and GmBA an average value of G ‘teken between A and B.
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Applying equations (32) to compute from iwo known polnts A and B
the phese at a third, C, which 1s on the same Mach wave, in the
form

Ao = kg =D g

“MpacBo Otoa l>
(33)

Bg - Mg = A}"C,B M poeo Atcp J

For the determination of the flow Ay and pp have to be computed
by means of thsese last equations end, at the same time, the position
ascertained of the polnts sought in the yt-diagram by the use of
equations (10). The calculation process might be explained by an
example .

The flow is considered as given along a curve of the yt-diagrem
and, adnittedly by » and p (fig. 5, table II). In addition, the
pine cross section must be 8 dmown fumction of y and t. For that
it 18 only necessary to require +that F can be differentiated
vith resvect to position and time, a premise which is always fulfilled
in prectice. For this exanple F is taken in the form

F = F 35t

From (31) for M

M=2( Y2, 1
ao\aoy aq%

The positions y =0 and t =0 for which M gogs to infinity do
not belong to this region of flow where such singularities appear
(for example at the center of spherical waves); it 1s necessary to
make speclal investigetions which oannot be enteref into in the
present repori’.

The best way to follow the calculation 1s by mesns of the
systematic celoulation in table II, To facilliiate comparison with
the desoription the columns are mumbered. The first column contains
the designation of the point which is to be computed, the second
column gives the known point which, in comuon with the point to be
oamputed, 1s on Mach wave 1., Column 3 conteins the corresponding

"Compare G. Guderley. "Starke kugelige oder zylindrische
Verdichtungsstbsse in der Nshe des Kugelmittelpunktes oder der
Zylinderachse." Iuftfahrtforschung, Bd. 19 (1942),pp.302-312. Thits
concerns ltself with a complicated special case of such & singularity,
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point for Mach wave 2. The first five rows reproducs the initial
values 28 well as some further values that hold at the given points
which are necessary for & later calculation. The calculation of &
new point is carrisd out in ths form of an iteration method; as

en example the point &4 will be explained. Next, the values for
Ay end uy ars estimeted (colwrns % and 5). In order not to
use too favorable an estimate, it ls assumed that Ay =

end B =uy. The guantity (A + p)), is determined for these
magnitvdes and from that, with the ald of figure 3 (__a_\ and,

o/l
farther on ( (colums 6 end 8). With these values (V_i'_é\)
_ 8o/l % /i
and (V - a) are computed (columns 9 and 10)+ Now the average
A )
directions for Mach waves 1 and 2 (Y_.f_ﬁ) a.nd.( vy - 9‘)
%0 /m,k ~ %o Jmpu

are formed (colums 14 end 19) and the Mach weves ave plotted o
the yt-diagrem. From this y) eand &gty (colums 12 and 13) are

cbtained. With these values M, (columm 11) end the average
values Mml )y end 1\%2 p (colums 15 and 20) are computed. To
continue for Mach waves l and 2 Aa tk 1= 8 t)_} t’l

and Amgty 5 = agty - ety have to 'be computed (colums 16 and 21}
P
and cen be substituted in equations (33). The guentities MMy 1

end Ay, , as well as A, and (colums 17, 18, 22, 23) are
ohtaine& I? the values A &and p calculated in this manner do
no% §gree well encugh with the original estimate, the calculation
must be repeated in which A and p Just calculated appear in
place of the earlier estimates. Nazturally, the Mach waves must be
plotted over again, too, in the yt-diagrem for this. These figures
only show the final form at any instent. For that reason all the
steps in the iteration method are put in the tebles. A good view
of the results of the calculation as well as Insight Into the
estimates to be carried out by the iteratiom method is obtained, 1f
the flow is followed simultaneously in a Au-dlagram, as well as the
yt~dlagran (fig. 5, right). There the A-axlis was selected
slanting up to the right at 45° and the p-axis downwerd at 45°. With
a sultable vertical scale A - L, and therefore v/ao, is obtained
imnediately on & horizontal scale A + 4 or VW and with the use

of unequal distributions a/&o end P and, for isentropic flows

'p/po too. The XA~ end p-axes were inclined 45° to obtain the

quantities of phyeical interest v/a,, a/a,, etc. in a coordinate
systen with the conventlonel arrengement.
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10. FLOW OF AN IDEAT GAS WITH ENTROPY DIFFERENCES

The introduction of A and K with the obJect of cobtaining
equatione in only one unknown, at any time, wilth the iteration
method for the determination of.the flow was possidble up until now

because the expression éﬁ_ with constant entropy might have bsen
o}

considered as the differential of a function W independently of
the cheracteristics of the incident ges. Naturally, that is no
longer possible with variable entropy. The computation of the
flow must, in general, therefore, return to (14). The ideal gases
consti tute an sxception. Hers, &as recognized in (30), the fumction

W which essentially agrees with 42 for comstant entropy ’
pa
depends on the temperaturs alone , and no longsr on the entropy.

If the expression 40 is considered, therefore, in the case of
pe :

variabls entropy as dependent on the varisbles T end 8 the

effect of change in entrovy is separated, then the rest’can be
written here as a differential and A and. u can be introduced as
previously. The changs in the entropy along the Mach waves nmust
neturally be regerded separately. This is possibls without especial
difficnlties since the entropy is constant along the life lines. The
. trensformations are carrisd through in the followlng menner. From
the sscond law

Tdas = a1 - L dp
o

teking in*o account (26 and (29)

' 'enC c
Zan =81 _pde . /TP Var - /C¥Tgs
ne. a a RT RV

Introducing W, X, and p as before, the consistency condlitions
are ob*elned in the form

.. _’LG QL 4 aTIJF) + (348) for Mach wave 1

W3
3 '*"
e[
o Jo

at a5 dy 3% o
QE=-.3_GB_1£+§E*F_+ v 2 1 38  (34b) for Mach wave 2
at 8q oy 3t Cp R a5 dt
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The differential guotisnte ds/dt formed along the Mach waves
interfers: The following trensformations are possible. Analogous
to the flow function of two-dimensional statlonery flows, a
function V¥ is introduced, ¥ 1is constant along the 1life lines.
This can be achieved by requiring that '

W __F p
. 5'1; = Fo o v (355-)
M _F o ' (35D
& "5 h . )
Along any curve of the yt-dlagream
ar _ 3, b at
T % Sta (3¢)

AMlong a life line %% = v therefore

that is V¥ 1s actually, constant along the life line. At each point
of the yt-dlagram ¥ 1tself cern tec defined %y a line integral that
leads fram & fixed point A at which ¥ might be zero to B.

/(Nfd‘y+5\fd‘9 /'(_F_‘__g_dy I_PF_.P_vd’% (37)
Opo

Opo .

The thysical significance of V¥ can be recognized as follows:
Iet C (fig. 6) be the intersection point of the life line through
A with the line +t = constant through B. To begin with, the path
of integration is along the life line fram A to C and, from
there, out along the line +t = constant to B. Along the life
line AC, V¥ 1is constent

XIIC=WA=O
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along the section CB, dt 18 oqusl to zero, accordiingly

B

Vo= -
B (J/CFODOdy

From this, 1% is svident that ¥ represents the mess which is
enclosed between the particles at an instant in time for which V¥
1s zero.

The fact that & 18 constant along a life line can te written
with the use of V¥ in the form

s =sl) (38)
For ds/dt then

ds _ ds a¥

dt & %

for which %% is to be taken, Just as ds/dt previously, along

the Mach wave considsered.

From (35) end (10)

é:i’...f.'_.ﬁ’_a : for Mach wave 1
dt FO fo

. F o a for Mach wave 2
dt Fo Py

Substituting these in equations (34), ellowing for (23), (28), and

2 ds R 1 [} _-]; d_J‘(__
l(9)creplacing 3 according to {27b) by W and po/po
v
)
by g &O? "yilelds the fnllowing consistency conditions:
D
)
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For Mach wave 1

o .
& g -_E_(lazni+_l~_a___zﬂ)—:2.F_Pd“
& °| eag\a, oy a, dt CPo F E{,i}_ (39a)

For Mach wave 2

c
& _a .8 (_v_ SinF _l_BZnF)+ o
at w85 \&g, oy ag Ot Cp

-B?_- P (39Db)

dxt
o o a
Here P 1is & function of A +p (fig. 3), F/F, 1s known to be
a function of y end +t. From (38) and (27b) it follows that
1 = x(¥)
and from this

dt » Ax (V) = constant for a life line - (k0)

i
&

For the sake of compactmess, introducing

C

Vo F dre
N=f5F%x

'DO [o] 24

Then (39) gnee over into *he form

*

D o=a (M+N)" (kia) for Mach wave 1
W -a (M -N) (L1b) for Mach wave 2

dat

Equations (40) and (41) supplant the-previous comsistency conditions
(15) and (14).
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Before starting the characteristic comstructiom, the problem
arises here, too, of computing A end pu, end now é'_b{tﬁ besides,
from the Initial velues. Along & curve K of the yit-dlagram let
the velocity be glven by v/ao, the phase of the gas by p/po

end T. From T with the eid of figure 3 A + p 1s obtained,
from v/a,, A - u; with this A end p ere known. Since p/p,

are given, and P as a functlon of T 18 to be gathered from
figure 2, = 1s oblained immediately from (28). As a result of
plotting = against the valuee of y from the curve XK end

differentiating % is obtained. From (36) and (35) together with
(23) % for the curve K may be computed for the curve K and,

finelly, with that

drt _ an &y
a0 = dy dy

is deternined. In many cases these computations are superfluous;
if entropy differences arise from compression shocks, the

determination of &%, A and p includes thelr calculation. The
a -

v
way the computetion of flow has to be carried out is shown in
figure 7 emd table IIT with pointe 4, 5, 6 as examples. The
related Au-diagrem is right center. (The points included, in
addition, in the table and the figures relate to a later gection.)

Along the curve K (points 1-3) A, u, end % are assumed as
a
known, in the suxiliery diagram %‘p has been reproduced as &

function of* y. The computation of a new point - take point 4 as
an example - begins, here too, with an estimate of A &and p
(teble III, colums 4 and 5). After that, as before, the following

axe computed (n + u)y; (a/aglys (v/eohy ; (v“—"; 2) ; ( tre);
o/ \ %o /y

+ ’ - -
(y“"‘"& 8) 3 (va a) ;3 (columns 6-10, 19 end 24), the position
° /ml,h ° /m2,k

of 4 is indicated in the yt-dilagrem and 7, and agt, In the
teble (columms 11 end 12) assumed. The determination of %ﬂfl' with

the 2id of the life lines entere in a8 scmething new. It should be
sufflclent for this to draw In a multitude of 1life lines, simultaneous
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with the construction of the Mach waves and going back over these
to learn the desirsd value % from the auxiliary diagrem. The

M-dilagrem is useful for & quick determination of the dlrection of

the 1ife lines. The position of the intersection points of the

1life lines with the Mach waves may be estimeted there without
difficulty, end then the average velocity learmed. (Compare points 1k
and 15 in the yt~ end In the Au-diagram.) After % has besn Found
and, in addition, P has been learned from diagram 3 (columns 13

end 14), M), end W), as well as (-M -N)), end (<M +N), may

be computed (colums 15-18), the average values (-M - N )ml y end

(-M + N)mo ), for the Mach waves be formed (colums 20 and é‘j) and
- 2

with *he aid of A a t (columns 21 and 26) from equations (L1)

compute A end Ap end, ultimately with that A end u.
(Columns 22, 23, 27, and 28.) Where the original estimates were too
bad, the computation was repeated.

11. THE GENERALIZED FORM OF THE CHARACTERISTICS METHCD

An outline shall be given of how to proceed 1f the simplifications
given sbove are no longer poseible or if the flow 1s so small that
the prepared computations as given et the end of section 7 do not pay.
As en example, let the computation of the point 4 be cerried through
from the points 1 and 2 of figure 7.(See fig. 8) The quantities

0.425

pl/pO 1.4l np-= 1425 vy /ag

Po/Py = 1.866; f, = 1.332; vo/a, = 0.400

correspond to the initial values assumed there. For the medium to

be Investigated o &and a nust be given as functions of p and =.

In this case P 1is obtained, first of all, from (£3) and from that-

and figure 2{b), T. Then o/p, end afe_ are obtained with (23)
o

end (29). Honcs )

e_l/ao = 10021; pl/po = 10375; (zai—i) = l-h')'l'6
v 9 41

ap /e, = 1.037; pp/p, = 17103 ( = a /r = 0.637
o .2
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besides
M, = 17475 M, = 1.4k

can be computed. Here, too, &n estimate is made in computing a new
polnt. For exemple

ﬂl + “2
Pu/Po = Pl/po = l.hh; V,_'_/ao = l/ao = 0.425; T = = 1.266

With this Py = (pu/po J/“k = 1.137 is obtained, whence

TZ]. = 282 S
Continuing further

AY
ah_,/ao = 1.01k4; - ph/po = 1.390; ("h + ah_)/_ao = 1.439

/\vh - au)/&o = -0.589; (v + a)ml,h./ao = 1.443; (v - a)me’h/aoé -0.613

With that the position of point 4 in the yt-diegram may be found,
glving

7, = 14465 a t) =1.258; A(aot)u,l = 0.048; A(aot)lhe = 0.092

and, after further calculation
M)-l- = 1-14-03

The average wvalues are found to be

(D/DO)m_l,u = 1.383; (a/ao)ml,h- = 1.0175; M , = 1.b39

\\ — . - H e=
(O/Oo,)mQ,lt.-l.sso, (a/go)mz = 1.026; Mooy 1.b23
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Considering equations (14) as difference equations then®

o 0

P (? a ( AT AR \
=2 () (- a-) o RS CRNEERN L
! 4 h )

Py (oo‘ {ao Pll- '92) - = x/Il_g_ VE\\

Po%o > P /up it B/ i\Fo  Po \&o G/
C
b v, .
Replacing -2 by 6—9-%2 from (29) end (23) gives
o
o] Po

’ C
p P’-l— vl.{. - =% Pl
2% DGR 5-('7?) RS

%, " o %o m1,4%0
Vl .
+ .a.;. - M ],h(aotlr_ - aotl)

C C
___/_g) () Bon Tl () E
T\ w2, & /m2, Po B0 Cpo ° /o, & 2 b Po

-a T Mp u"a %y, - aot2>

"For ideel gases the Pfirst termn of the left side of (14) may

be written ldlnp
k 4t

separately. To peramit the procedurs to be applicable In more general
cases, this simplification is not used here.

&, then o/o does not have to be computed
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Putting In numerical values gives as & result

0.547 ph/p0 + vh_/ao = 1.1430

0.3715

0.484 Ph/Po - w/a,
Py, /po = 1.470

Vv, 0 c3!+2

%

e}

From the welocity computed above vh/a.O end the velocity at

a point 4', estimated for the present, of the cormecting line 1.2,
the average direction of the life line passing through bt is obtained-
by an epproximation method. If this is proceeding from 4 backwards,
the more accurate position of 4' is obtained. By interpolation

between 1 end 2 7' =m = 1.243 is obtained. Since the values

P
_E, f&, “h do not agree sufficlently well yet witp the originally

P 8
estimated values, the computation must be repeated with the magnitudes
Just obtained as starting valuves. This gives

pllL/p0 = 1.478; vu/ao = 0.3383; T, = 1.243

2. SIMPLIFICATIONS FOR IDEAL GASES WITH CONSTANT SPECIFIC EEATS

Generelly the flowing medium is an 1deal gas with constent
speciflc heat or at least can be considered as such, as an approxi-
matlon. In such e cese appreclable simplifications are possible.
Tet

k = c:p/cv

then
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From equations (27a), (29), and (30)

£
-1

k N
T = . 2
1>=(-— ; & =/_.T,- a =,/KRT, ; W=>Atl /e -1)
) a, JvT,' © °’ 2 k - 1\ &,

With this, it follows that

. 2 4s Ni ¥ (k2a)
)u T evammenmre [ — l '\+ — .
k - l(ao 'jl 8q
2 a v (s2p)
T e T T Q. i
k- (ao ) ao
end from that
ag --E-—O\- !J) (Ll- c)
conseguently,
. oK

The directions of the characteristics are obtained from (9) and (10)
in the form .

%% =a - for the 1ife lines
% = .ao\/l + -]E-i:—!: A - 371—1‘- u) Por Mach waves 1

g—.y— = [— Ld k 4- l = k s
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The consistency conditions for the Mach waves remain unchanged in
the foru (40) end (41). M and N e&re expressed as follows, now,

o X - . - . - i

L y a, St
21
:lg‘__ - k - 1 _"'k-ldﬂ
S ]

The directions of the characteristics mey now be found very
conveniently graphically. A constiuction which is sultable if the
simmltensous trsatment of the flow in & Ap-dlagram ls avoided is
the contribution of Adem Schmidt.(Ses £1g.9.) For the determination
of the dirvection dy/dt for a life line, two vertical scales at a

dlstence of 1 apart are used with },2: plotted on the right one

end % on the left one as ebove. A life line for a phase which

is glven by A and @ has the direction of the commecting line
of the points concerned on the function scelss. Similarly, there

are scales to use for a Mach wave 1, which give -k u  on the

k+ 1 , k+ 1
left and 1 + i A on the right. For Mach wave 2 =5 )

has been plotted on the left and -1 + 3—1}—15 M on the right. In

figure 9, the direction of Mach waves 1 end the life line is given
for A =11 and u = 0.6.

If the phases in the course of the construction of a Au-dlagram
are followed up, the following method—is sulteble (fig. 10, right).
A vertical line is sent through the O-point of the Ap-system and
the poles P1, Pp, end Py are dstermined, where Py 1s on a

level with the orligin of the Ap-system and ve-) avay from 1t. Py
end P2 are directly below snd above Pr, respoctively, end

likewise the distence Y2 from it. To find the direction of the
characterlstics for a-glven phase, & horizontal ray and two rays

slenting upward and downward at en engle arc tan ].‘.._é._l-. are drawn.
These Intersect the vertlcel line through the origin of the Ap-system
at the polnts Q;, Qp, end Q. The comnecting lines P;Qj,

PoQy, end PpQp ere the directions of Mach waves 1 end 2 end the
life line. In figure 10 the construction for point U is cerried out.
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This construction is espscially convenient with a triengle having
en engle arc tan %i. Figure 10 and teble k give an example of

an application for the same initisl values as in figure 7 and with
OP/G.V = constent = 1.k.

13. BOUNDARY CONDITIONS

If the flowing gas columm 18 not infinite, the variation of
the flow is determined by the phase at the stert, in additicm,
also by conditions at its boundaries. For exemple, a gas can be
closed off by a piston or rigid wall, flow out into & space with
a glven pressure, or be sucked out of the sasme. Generally, the
boundary conditlons may be formulated so that relations between the
phase magnitudes of the gas and its veloclty along a curve of ths
yt~dlagrem are prescribed. The number of conditions ¥hich ars -
needed for the boundery curvs corresponds to the number of charac-
teristics which run out fron there into the interior of the flow.
For example, the gas flows out of the end of the pipe into a space
with constent pressurs, with v< a, then the linme y = constant
is the curve for the pipe for which the boundary conditions are
given. A family of Mach waves spreads out from it inward, while the
other family and the life lines reaech this curve, approaching it
from wlthin. TIn this case the condition cen be prescribed that
the pressure in the exit sectlon be equal to the outsids pressurs.
If the gas is sucked in from outside, Mach waves of the cme family
proceed from the curve of the boundary conditions as well as the
1ife lines. Accordingly, two conditions must be glven. The one
etates that the entropy of the entering particle is the same as
the entropy in the outer space, as a second it would be required
perhaps that the phase of the ges in the entrance section be related

to the phess in the outer spsce through Bernoulli's equation®.

- (An exsct formulation is difficult, since the flow at this location
is no longer one-dimensicmal.) If the characteristics of all thres
femilies of a given curve lead out into the interior of the region
to »e computed, there ars throe conditions to prescribe; this is
the Initial value problem alrsady treated. The other extrsme, that
at the boundary of the region of intersst, gensrally, no condition
cen be fulfilled,is physically conceivable, too. For example, if a
gas with v > a flows In a spsce at constent pressure, generally no
characteristic goes inward from the outflow sectlon. .

BCompa::'e Schultz-Grunovw, loc. cit.
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Actually here — dilsregarding boundary .conditions ﬁhioh force
compression shocks — no effect on the Tlow veriation in the interior
is possible from outside. T

The treatment of boundary conditions is explained with two
examples which are commected with the flow in figure 7. The com—
putation 1s entered in table III, as far as possible. The first
example inoludes points 7 to 9 and, admittedly, it has been assumed
that the gas column 1s bovnded by a piston whose life line is
represented in the yt—dlagrem as the curve 3, 7, 9. (Whether it is
practicable to realize such & piston in a tube of variable cross
sectlon is unlmportent for carvying out the computation.) The
Mi—diagrem referred to 1s in figuve 7, upver right. To begir
with, an estimate is made of the phase at 7 which has been chosen

h7 = h3 = 0,800, Mo = Hg = 0.050. Since the line 3.7 is the life
of & perticls, dn is already kmown and is ocgual fo (?lﬁ "
SN/ ' . av/ 3

With this the values in colwmns 6-10 and 19 are calculated. 48 &
result of drawing in the Mach wave 5.7, y7 and egty {columns 11
and. 12) are obtained end besides v7/a, from the direction of the

life line at point 7 which has been reached. (This quantity is

found in column & under the value computed from the iniltial estimates. )
Now the guantities in columns 1L te 18 and 20 to 23 may be computed,
the value v7/ao obteined from the boundary conditions will be used.
With that x7 is already known. The quantity Hep is obtelned from

the relation

J ooA=p
=

Inserting mmbers

0.323 = 1/2. {0,417 - Wrls Mo = —0.229,

Since the first estimate was too poor, the computation must-be
repeated. '

Point & is computed from 6 and 7 by the method explained.
in seotion 9. From 8, point 9 is obtained in the way jJust described.

This method of celculation is useful for any laws of motion
of the pipe; & epecial argument is necessary only if a discontinulty
appears. The digcontimuity in the velooity i1s to be considered
attained on transition of the boundary from a oontimious velocity
variation at very large acceleration. In the yt—-dlagrem that means
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that the life line of the piston which has a bend at the instant
of the velocity discontinuity is rounded off immediately. Then the
flow may be drawn accurately just as previously. To obtain
sufficient accuracy, enough points must be teken on the rounding off
so that the velocity of the plston does not chamge excessively from
point to point, end at each point a Mach wave of the.first family
mey convergs and a Mach wave of the second family may diverge from
there. First of all A\ must be computed for the converging Msch
vave and then from A and the velocity at the incident point "
determined for each Mach wave. If the rounding off becomes smaller
and smellsr, these polnts on the rounding off draw closser and
closer. With that the values of A\ approach a single value, which
may be computed from the field before the bend. The Much waves 2
spread out in the shape of & fan from the bend end the fan includes
all values of p which lie between the values of p for the
velocity before and after the velocity dlscontinulty. :

For the second example, there 1s at the position y = y, an -

open pipe end, through which gas is sucked in from outsids and for
which two condltions must be specified along the boundery-condition
curve. The curve is the curve 1, 10, 13 in figure 7. In the outer
space let = = m;; for the entering particle therefore %% = 0.

This is one boundary condition. As the second boundary .condition
there is the regulreuent that the phase in the inflow sectilon be

related to the phase in the outer space by the Bernoulll squation.
This condition may be satisfied, already, at point 1, accordingly

i+ V2/2 = il + 'V12/2
or also

i-13 \2 '1 1V2
o, 1/ v 13 1
E;Fr__ ¥ E'(FTT) ____3?-- Q'KEF' = constent

To determine thess ccnstants from Pigure 3 the tempsrature Tl is
taken for (x + u)l frem figure 2(a) for’ Tl: {17 - io)/ao

Then
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Since (i - 10)/302 is a function of""]." and, therefore, of A+,

av l‘—-é--li this boundary condition ca.n be plotted as the curve X
(o}

in the xu-diagram (fi.g T; Lower right). At 'best the computatim
of point 10 beglns anew with an .estimate for N and i 8o that

the boumdery conditions are already gsatisfied (colums 4 and 5).
With this, the quantitigs in columns 6, 7, 8, 10, and 2k are computed
end Mach wave 2 drawn’ in with that. ‘I'he quantity a ’blo is

obtained in column, 12, the wvalues Y10 = yl and 1]/ = 0. (Columns 12
d

end 13 are given beforehend. ) Now the quantities in columis 14 to 18
can be obtained.

To determine, with this, the quanti’oy (-M * N) in columm 25
1t is to be noted that (-M + N) - for the particle originally in
the pipe has the 'value, perhaps, at point L end chenges dls~
continuously for the 'particle recently sucked‘ into the gquamtity
(-M + N)lo

On that account the life line ip drawmn, Which separates the
particles in the interior orlgineglly from: those particles flowing
in from outside. This Intersects!Mach wave k,. lO at point 11.
Then the following iB ‘obtained: (column’25)

S — [A(aét)u’ll(-M M),

(M + N)m’-t- 10 °
s A(&LOt),+ 20

* A(a0£)11 10(‘M.+ Nh‘J

The quentities in columms 26, 27, end 28 may be computed now. As a
result of Inspecting the curve of the boundary condition in -the
au-diegram with the value of u foimd, A 1s obtained (colum 23).
The computation is repeated with the values found in this way.

From points 6 and 10, point 12 is obtained in the manmer
descrlbed in sectlon 9. In commection with that the difficulty Just
described appears again in finding the average value for (-M + XN).
From 12 and the boundary condition), point 13 may be computed by
the method Just presented.

The Au~dilegramg of the two last examples were kept separate
from the Au~dlagrem drawn for points 1-6 for the sake of clarity.
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If the varlous figures are visualized as being Joinsd -~ the upper
diagrem comnected to'the middle one at the line 6, 5, 3, the middle
one with the lower one at the line 1, 4, 6- 1%t 1s recognized that
the plane is covered with several sheets which are connected along
the figures of the charscteristics. There is such a superposition,
alrealy, in the lowsr Ap-disgram; there are to be imagined inclosed
the quadrilateral 10, 4, 6, 12 along 10, 4, the trisngle 1, 4, 10,
along 10, 12 the triangle 10, 3, 12.

In eddition to the boundary conditions, transitional conditions
can also appear In the interior of the flow. Tn the example Jjust
discussed Just that would have been the case, 1f in the outer
space =® vwere diffsrent fron %1+ At the location of such a

discontinuity for = agreement of pressure end velocity must be
required. To go into such questions with greater detail lies
beyond the scope of this report.

14 . TRANSITICNAL CONDITIONS AT COMPRESSION SHOCKS

The flow In a given part of the yt-plame is defined by the
initial and boundary conditione and is calculaeble by the methods
derived up until now. It 1a possible that it might heppen during
ths construction that reglons of the yt-plene are covered with
phase quentitles several times. This is the sign for the appcar-
ence of compression shocke. The entropy is no longer constent
after tho passage of a compression shock. On that account the
computation of ccmpresslon shocks simultencously includes ths

determination of the function s{i) or %%ﬁy), too, for the
reglon of the yt-plane behind the compression shock.

For the mathematical treatment, a compression shock is to be
considered & curve along which two flows collids, which ere rslated
to one another and to the dircction of this curvs by tremsition-
conditions. It will be the problem of this section to derive
these (known of themselves)” tremsition conditions in a convenient
form for the present purpose.

Proceeding from a stationary compression shock, that 1ls from
a compresslon shock whose front is &t rest rslative to the coordinate
Bystem gelected, let the index I designate ths phese befors the

9Co&upare Ackeret for imstenco. Beltrag Gesiynamik in Handbuch
der: Physik, Bd. VII, p. 324 end following pages, Berlin 1927.
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shock, the index II the phase after the shock. The additional
indsex & mnight point out that this concerns the calculation of
a stationary shock. Then the momentum and the energy theorems
as well as the equation of continulty sre wrltten In the form

2 '
pIs * pIvas Pr1s + pIISVIIs2 (432
1 2 - 1 2
1 o+ = =3 __ + & L
Is 218 TTs = 2 ITs (1:30)
= ll- (o]
OIvas pIIsviIs (13 )

Furthermore, the characteristics of the gas concerned must be known,
possgibly in the form

p = p(1, o) (134)

If the quantities in advence of the shock iy, o7g, and vy, are

Inown, then the compression shock is therewith calculable., Actually
all three quantities enter intc the genersl ges laws, hoo, asg
parameters. In order to carry out the computatlon practically, in

such a case, pyp, from (43c) and iIIs from (43b) khave to be expressed

as functions of vy and the known 'uantities and then substituted

in (43a). With that, em account of (h34d), pIIs, too, is a

function of vIIs and the lmown quantities in advance of the shock.

In thls manner en equation for I1s alone 1s obtained which must

be solved numorically in a suitable mamner. For an ideal gas for
which oy is not constant, equations (43) tremsform with the aid

of (23, as follows:

0
Is PIs -
T RTpg ¥ ===- vy ® = Rlpgg * Vopg® (kha)
ITs ITe
2 1 2
1(Trg) + %VIB_ = 1(T11g) + 5711 (bkp)
o
Is
VIg = Vorg (khe)
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Sin /
ce oIs appesrs here only In the combinstion pIIs’pIs only
TIs and T1g gt1ll remain as parameters upon which the phases

behind the shock depend. To calculate the shock curves nunerically,
it is useful, first to regard Tyg; and Tqyg @s parameters and

deternine Vg from this subssqusntly. The computation process 1s
the following: From (hha) end (hlc) o

RT RT
g s (45e)
Vis VII.

As a result of squering this

2 a2

2
R T - R°T
Ia 2 IIs 2
ot BRTpg * Vyg = o * Ipe * Virs (k5b)
VIs IIs
Introducing

Al = dgyg = 1pg

glves
ViTel = Vgt - 241 (46)
from (4ub).
Putting. this in (45b), the desired equatiom for Ve is
obtainsd as

-4n1? + bRAL(To o - TIS) |
\

LEAi-QR(II - )|+vIB i

o2 2 _ o 2)]. 2
s ( e - Tre )‘l 2RPT AL

I VIs 1s determined, then viIs and pIIs/pIs are ccmputed in
turn with the aid of (46) and (4k4c); finally '

0

Pns/ Pre = Prrs/? Ts Trre/1s
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For en 1desl gas with constant specific heats, the following trens-
formations may be umderiaken. According to the familiar reletions

{ = —£ __RT
k- 1

and
8 = KRT *

Equations (45a) end (4kb) are written in the form

2 a
°Is 4+ v I 4 v
kas 1T
2 2 2 2
To T %8s tVIe Tk -1 21T T VIIs
or
11 Y1s _ 1f B1Is 2 1 Viis (47e)
= + = = + : e
k v /815 &rs K\ 8Is viIs7aIs 8Ty
2 2 N2 -
2 Vg 2 o118 V118"
<1 + = -1 + “""‘a (Ll-'?'b)
818 \?Is _ Is

By this, epp./agy; end Virg/8y 8nd, with that, the other quantities,

too, depend on the persmeter vyg/ayg &lone.

X
To compute Vyrg/etg, LfIIs/aIs is eliminated:

. .
k+l(vIIs V118 kzl_§_+f._;_§_+l+k-llr;§\2=o
2 \os 818 \ %18 Vis 2 alg)

is obtained as a result.u
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The golution of this equation is found, immediately, if 1% is
borne in mind that on account of the form of (47) & solution is
represented by

vi1s/21s = Vig/o1s
then

Yi1s _ 2 /‘?Is+k-1vls>

, 81g k. + lKvIs 2 apg
Using this, the following is obtained from (47%)
\2

» . N
_..,.IE) -1+ k-2 "1 € _f "1V
T8 2 [ \°1s ) 218

and

°r1e/P1s = (vIs / aIs)éTs / VIIE)

Prrs/Prs = <°IIS / DIB)'(TIIB/ TIB)

2
VIs/ aIs aIs/ V-IIs ( 8"III'_s/ BIS>

The chenge of entropy is of interest, as well; with the aid of (27)
end (28), these expressiomns resvit

s -8 T
S11s ~ %1s _ ¥ im s\ - e Ils
R L I1s J P1s
®1ts _ °Is _ 2k 118 - 4p IS + gn LIS - oy SIIs
R k-1 aIs aIs' atg aIs
-2 o PIIs . yp I8 4 3p I8
k- 1 2

Is 81s 81s
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From this
* 1c21
"rs _( P18 Vs 1
s 81s 81s V118

Arbitrary compression shocks result from the stationary compression
shocks Just calculated because a velocity is superimposed. In doing
go, the thermodynsmic phase quentitles before and after the shock
for which e&ccordingly the index s can be omitted are retained amd
moreover the wvelocity diffsrences. Since the phase in advance of
the shock 1s already given In the construction of flows, before the
shock is computed, the relative velocitles with rsspect to the phase
in advancs of the shock are formed. Let

1 absolute veloolty of shoock front

& relative veloalty of shook front with respect to particles
in advance of shock

Then
M I8, ar avy_ -y =-_2 (2801
ar ar IT,I IT I k+1\ar Vg

The signs appearing in this are not astonishing. A statlonary
compression shock in a ges which moves in the positive direction
propagates itself in a negative direction relative to the material
ehead of the shock, and in so doilng, produces a change in velocity
in the direction of its propagation velocity, that is, in the
negative direction, too. Neaturally, compressicn shocks, which travel
in the positive direction in the materlal at rest are also possible,
the slgns of the wvelocities have to be changed for these. Tho
thermodynemic phase quentities of this are not touched upon. Corre-
sponding to the distincilon which had been met in Mach waves, these
lest compression shocks are designated compression shocks of the
first type, those which propagete in the negative direction as
compresalon shocks of the sscond type. In figure 11 the pressure
ratio, for an ideal gas with k = 1.405 <the propagation velocity of
the compression shock and the changs in entropy (expresse& by
“It/ﬂl) has been presented as & function of the veloclty change
Ay '/ . For compression shocks of the flrst type Au and Aw
IT,X II1
are to be taken with positive sign, for compreselon shocks of the
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second type with negative sign. The fundsmental numerical values
appeer in table V. BSuch a diagrem would have to be used to epnly
the characteristics method in the form given in section 11 in the
computation of compression shecks. How are these relations for the
compression shock expressed in terms of A and p% If two
compregeion shocks which only arise sseparately from superposition
of a veloclty =~ they are distinguished by the indexes o end B -
ere represented in a Au-diagram, that is, 1f the phases in advence
of the shock )'I o MPr ool ANrps M and the phases behind the

s 5 IR 1B

shock are plotted, then hers, too, the expression must be arrived
at that the thermodynamic phases in advancs of and behind the
ghock, as well as the velocity dlifferences for 'bo‘bh compression
shocks are the same. Accordingly,

A A

I, * ”I,a B + H1p

-;- .=‘ +
MIe ¥ M1r,0 = Pop t PoTe

A “p Vv -f{na - = (a - -(r__ -
(II,or. 11,0} ( I,a ”I,a) (II,,B uI:t,B) ( I8 ”’IB)
By subtraction of the firast two equations
+ - = - . + -
‘\"II a XI,a.) (“H,a “I,a) (’”I_I,B }'IB\ (“IIB “IB>

Rearrangling terrs in the third equation gives

A T = [A - A - fu - 1
(II,Q; M or.> {” ,a 1,a> <IIB I,B) < ITB IB)
From the last two squations it follows that

by = A - A
S IT,a I,a 1,8 I,B

s vl R
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thet is, the chenges in A and u in a compressicn shock are main-
tained in the superposition of a velOUity. Accordingly, the shocks
are designated by

11,1 T MIx

Myrr =M T M

The following relations hold for ideal gases with constant specific
beats, according to (42)

N
i"._c"r (aII_)_VII"’I
a k-1 &

° .

aI/a is to be computed from A end pp by (k2c). TFor the
expressions in curved brackets

Ai-:: -l+

e(f_x_z__l_VII'VI
k-1 8 a
- NI

™
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ere introduced. These quentities, as well as Au/aI, “II/“I:
and pII/pI denend only on _vIs/aI accoriing to relations

previously developed. They are plotted In figures 12(a) and 12(b),
and, admitiedly. the upper designations refer to the compression
shocks of the firs* type, and the lower designatioms to compression
shocks of the second type. Figure 12(b) represents en increased
section of figure 12(a), with the. appropriate numsrical values in
table V. ' ’ '

The following example shows a first application of this diagram.
In a pilve of constent cross section thers is & quiescent ges of
constant entropy and constant pressure, the sonic veloclty is taken
to be ar = ao. Suddenly, a piston is driven inte the pipe at a

miform spsed of O.5ao. What 1s the ensuing flow llke? Figure 13

shows the yt-diagrem. - Ths starting peint of the plston motion liss
at the origin of the coordinate system. The 1ife line of ths piston
is shown wlth haiching. A compression shock Forms in front of the
piston, which imparts the veloclty of the piston to the particles, so
that the particles behind the compression shock move with constant

. velocity. Corresponding to the phass in front of the compression
shock is ' :

The veloclity bshind the compression shock is

'\TII = O-5ao
thersfore, -
L5 - o) =
s0IT " brr) =05
MroTHpp =t
From this, on account of XI =0 and By = o .
M _~tu_ =1
T, e .

Since ar/aj =1 this gives
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Ag a result of causing this straight line In the Ai.—A{I-diagram
(fig. 12(b)) to intersect the shock curve, the following is obtainsd:

ON = 1'022; AII = 0-022; %% = ll3h~6; ﬂII/'ItI = 00970

I = 0.022; m o= 10324'6

Y11

Fram »py &nd ppr, P is computed by (424), from this by (28)

PII/pI = 1.970

The goal would be reached somewvhat qulcker in this by application of
diagram 11,

15. PRELIMINARY ARGUMENTS IN THE DETERMINATION OF A COMPRESSION

SHOCK IN THE FLOW FIELD

It is the object of thie section +to show first of a1l by what
data a conpression shock in a flow 1s deterinined, end, secondly, to
give a method by which the computation of such a compression shock is
posgible.

.Ae can be readily shown, the veloclty of a compression shock is
larger than the veloclty of a Mach wave In the material. This means,
that the flow field in advence of the conpression shock remsins
maffected by this and cen be computed independent of it. It will be
assumed to be knowvn vhat follows. For the field behind the shock,

a compression shock of the first type represents on the one hand the
start of l1ife linee and Mach waves 2, on the other hand the terminal

of Mach waves 1. It follows, from thls, that the flow behind the

shock and the shock 1teslf are mutually related and can only be
computed together. This is the reason, therefore, that the computation
of the compresslion shocks becomes, essentlally, more complicated

than the computation of other parts of the flow.

Wext will be shown how exemples cen be conceived of flow flelds
with compression, shocks. If in the yt-diagrem (figs. 14(a) and 1h(Dd)
the flow f£ield in front of the compresslion shocks snd the portion CI
of the 1ife line of the compression shock is given, then the phases
behind the shock are also determined. From the slope of the lifs
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line the propagation veloclity of the compression shock is given,
namely for each point of CD. Beside, the phases in front of the
shock can be learnsd for the points of CD; with this the phases
behind the shock are calculable. From the phases behind the shock,

& portion of the flow fleld behind the shock, nemely the region CED
(fig. 14(a)) may be computed, or if the entropy is known for the life
lines st the lower end of C. The reglon CFD (fig. 14(b)) as wsll.
It is necessary to go forward along the life lines and Msch waves 2,
backwards along Mach waves 1. TImegine in figure 14(a) that the
computed 1ife lins CB is realized through the motion of a pistan,
then there 1s a flow in which & compression shock esppears end which
satisfles a boundary condition (if not prescribed, too). In

figure 14(b) 1t is necessary to imagine anothér flow field adjoinsd
continuously at the lower end of CF; heore the compresslon shock

and the flow determined by 1t satisfy the condlition that it 1s
compatible along the Mech wave CF with another flow.

From these flow flelds the following is recognized; the
conpression shock through the portion CE of the life line of the
piston or CF of the Mach wave is defined as far as 1t is reached
by Mach waves of its type (here the first, therefore) + & change of
the 1life line of the piston outside of CE or the Mach waves :
outside of CF propagates along Mach wave 1 in the yt-diagrem, to
be exsct, and neglecting cases in which a second compression shock
erises, attains the compression shock at the upper end of D,
certainly. On the othier hend a change brought about between C
end E or betwewn C &and F in the boundary or junction
conditlions tekes effect at that position on the compression shock
where the Mach wave 1 concernsd reachss 1%, that 1s, the portion CD
is certainly changed.

If tho 1life line of the piston is known beyomd E to G or
the Mach wave beyond ¥ +to H, then & further portlion of the flow
Pield 1s thereby dotermined, without the necesslity for knowing the
continuation of the compression shock beyond D; 1t concerms the
regions CEGJD or CFHKD. '

It will now be shown how to procede fundamentslly +to compute
a compression shock for specified boundary or Junctlon conditions.
As a concrete example assume the comprossion shock to be produced
by a piston which experiences a sudden jump in velocity. (See fig. 15.)
The starting point of the comprossion shock is that peint of the
life line of ths pisten at which the velocity Jump appears. The
phase lmmedlately behind M can be ascertained immedlately by the
method applisd to the example of the last section. The compression
shock - as in previous examples of Mach waves - i3 camputed in
individual sections, which are so small that the phase gquantities
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for them may be regarded as varying lineasrly. As Just carried out,
the phases behind the compression shock asre calculable, if the
velocity of the shock is known. The volocity at M is known.
Along the portion of the compression shock to be computed, M, N,
the vhase change and, with it, the change in propagation veloclty
of the compression shock too, are regerded as linear. Accordingly,
for all possible shocks which satisfy the trensitiom condltions,
the portion M, N, of the compression shock depends only on a
singls pararneter, the veloclty change between M &and N, 1o be
exact. As & result of computing the field behind the compression
shock for various values of this perameter, by interpolation, that
shock 1ay be ascertained which is consistent with the specifled
piston movenent. At best, for this N is permitted to travel on a
fixed 1ife line in the field. in edvance of the shock. ILet C be
the point on the life line for which the Mack wave 1 passing
throuvgh N procesds. Now the region OPGN may be computed in a
femiligr menner. For the dsterminstion of the extension of the
compression shock NR +the phase behind the compression shock at
the point N may be regarded as given everywhore alang the entire
Mach wave NQ. . On the other hend, that value of velocity changes
between N and R . has to bs determined by interpolation, which
reletes to a flow field +that continuously joins the known field
along NQ.

With these two types, nemely the computation of & compression
shock going out from a piston or well and the computation of a
compression shock continuing into or arising in the interlor of the
flow, the most lmportant probleme have been mastored that cen appear
hore. The interpolation methods described becoms preity todlous;
instead of them, iteration methods will be used, which actually lead
to the goal more quickly. The interpolation method was mentloned
previously, however, since it affords betiter insight into the baslc

raslations.

16. EXAMPLES OF THE COMPUTATION OF COMPRESSICN SHOCKS IN THE

FIOW FIELD

Examples will be given of how the problems formulated in the
preceding section can bs solved by neens of iteration methods. Let
the flow be that couwpvuted in Pigure 10 and teble IV. As the start
of the nev portion of the compression shock to be computed, point 1
is chosen in every case, accordingly it is idontified with the
point M (fig. 15) once and with the point N & second time. The
" new portion of the compression shock to be computed that corresponds.
to MY or NR, accordingly, is assumed to end én the life line 8, 9
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of figure 10. The phasesg in front of the shock for N or R are
obtained as a result of interpolation along this line. For these
calculations it is necessery, on that sccount, to have the mow-
ledge of the flow field in front of the shock at the points 1
(M or N) end 8 end 9. In teble VI which has the seme arrangsment
as table IV these velues have been recordsd. While 1t sufficed to
know QJ_S.! for the cometruction of the flow field, here = itself
ar
must be \'known. Thess quantities for points 1, 8, and 9 are located
in column 26. In the designetions, in these exemples, the only
deviation from figure 15 is that only points on the compression
shock are cheracterized by letitsrs. Numbers are used for points of
the flow field, corresponding to previous use.

We begin wilth the more elementary problem of continuing a
compression shock in the interior of the flow. For this the phase
behind thes shock at the point W and the pheses along the Mach
wave Nrp,10 (fig. 16(a)) may be considered known. The phases

at NII and at point 10 appear in iteble VI, vhasss in between are
found by linear interpolation; morsover, for NII the 'velocity of
the compression shock and = have been given. (columns 25 end -26) .

Besides %.’-‘- for ths life lines lying below N may be viewed as

computed. It was entered for point 10 in the corresponding columm.
If the dlstances between points on the compression shock ars not

chosen too large, it 1s sufficlent to regard &% between them as

ar
as constent. In the following this has happened throughout. Since
N and 10 1lle on a Mach wave, the conelsitency condlition must

IT
naturally be satisfled.

Tn comnectlon with the flow calculstion the existing data are
to be taken from the preceding calculation steps. The real
conputation begins with the fact thet the difference In Y from
its value at the starting point of the portion of the compression
shock to be computed (N here) 1is ascertained for the life line
up to vhich the compression shock is to bo computed (8, 9 here).
This computaetlion is carriled through slong the curve of the inltial
values in figure 10, the life line 8, 9 used here passes through
point 7 there. By (37)
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By (23) and (L424)

- - 2

k-3
=r1+k;l(x+u)

P -
0

Just as for figure 10, F hes the Form

2
. | F=F0y'b

For point 7T

= 1.450; a t =1.180; A =0.66; p = -0.16; %, = g = 0.849

For N the corresponding values appear in table VI. With this the
following 18 obtained:

E L2\ - o.e80; o x\ -1.110
FO po 7 FO Qo 80)7
E PN - 2.170; F L I\ =093
(Fo oj ! Fo 0o 8
rN }N
E o\ = 2.425; F. 2 3 = 1.020
¥ s 7 |
n Po 0 8,
© /N, 7 O/, T

A\,(/_{ . 2.425 x 0.075 + 1.020 X 0.03 = 0.2122



NACA T™ No. 1196 51

Tn figure 10 g—ﬁT had already been given, 1i must be the same us
v .

tha* found from the guantities Just computed. In fact

- 1
T K . 0.049 - 0.230

(dzt) = 1 =
dTlJm?,N al 0212

This is the average value of QJ.IE as can be gathered for the
r .

stretch 1.7 from the auxiliary dlagrem in figure 10. After these
properations, the actual iteration method is reached. To begin
with, the phases at the points RII and 11 arve estimated, in

that 11 i1s the interssction point of the Mach wave 1 leading
backwards from R wilth ths glven Mach weve HN,10. Since no better
refersnce point existes for the estimate, these phases are equated
to the phass at NII' Moreover, still another estimate is needed

for ad% behind the shock; for this, the same value that prevalls

at the lower end of N i1s chosen. With these assumptions, the
figure N, R, 11 may be drewn in figure 16(a). Starting with the
life line of the compr=ssion shock XR, whose direction hers is
the sems &s the divection of the compression shock at N (taeble VI},
R is obtainsed as the inversectlion point with the 1lif'e line 8, g.
Then *he Mach vave R,11 is drawn in proceeding from R backwards.
The direction of this Mech wave was teken in the familiar manner
fron & Mi~-diagram (not given here). From this figure *he position
of R in advance of the shock 1s learmsd bty interpolation along
N,10 the phase at 11. (See table VI.) Fron this mey bs cbtained
the values entered further on in the rssyective lines whlch are
necsssary for later conputation. Proceeding from }”II by means

of the congistency condltions, the guantiiy )”RII is computed for
the Mach vave (11,R;y). For this the initlal estimates for the

phase In Ryy are taken as a basis and then columns 6 to 13, 17,

15, 16 and 18 to 20 computed. For )"RII so cbtained the

properties of the compression shock ars teken from the shock
diegren 12(b). The following computations are _essential to this

= A - X = 0.954
AA‘RII,I RIT RI 95

By =B o /(am/%) = 0.954/1.040 = 0,918
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From the shock diagram

- P\
Mjip = 0.0130;3 "RII/“RI = 0.978; ;EE = 1.307
T

From this 1t 1s computed that
A

= 0.0135; n___ = 0.830; —& = 1.360
oy 373 Tpry P 3
= =0. M = + = .
Porr 0.090; gR/aO VRI/aO _AMR/aO 1.661

‘A portion of these results are given in teble VI (columns 2k %o 26).
Moresovey

én , "RIT T TNIT  _ 0.830 - 0.781 _ o.230
& A 0.2122
R,N

To Inprove these values, let a second iteration step be carried out.
First, the figure N,R,11 has to be drawn again for the valuves
Just obtalned. The averags direction of the compression shock 1s

1
YR sluyg + vg) = 1.733
Then R, end 11 are obtained by interpolation, Apyr from the
consistency condition for the Mach wave ll,RII.

To £ind the characteristics of the shock, 1t is necessary to
carry out the following computation -

= l-h‘ 6 ~ 0.11- = Ot 6 H ”-. = 0.
MR:;I,I 5 93 963; LA 927
From tho shock dliagrem
- AMP
AL = 0,0130; “RII/“RI = 0.930; ;;; = 1.310

From this i obtained

93 = "03087' b1 = 01828' u a = 1'6 H -(-3-':—1- = 0,220
R,TI ’ “RIT * "Riy o ALl

£



NACA ™ No. 1196 53

An additlonal iteratiom step 1s not necessary any more. In the
second example (fig. 16(b}) the cowpression shock is produced by
the sudden velocity change of a pilston. The point of the yt-diagram
at which this velocity Jump taekes place - let it be designated M
in agreemsent with figure 15 - is to coincide with point 1 of
figure 10. TFrom the point M the piston has the velocity corre-
spoinding to the life line in the field in front of the shock, in
particular the velocity at M in front of the vslocity Jump is
0.k25a . At M the velocity changes, suddenly, to the value
VM = 0-925a0 and rises until the instent aot = 1.3 %o the

II

nagnitude 0.975a0. "This snd the flow field as detérmined by the
initial conditions end the plston motion up to the point M 1s glven.
Next the phase behind the shock at the point M is computed.

.
ML (1.) - { X = 0.500
M,I

%o %o \Foly 11

SMILT _ .83
a.MI

%(N'C - Am) = 0.483

As a result of this line in the shock diagram 12(b) intersecting
the shock curve, the following 1s obtained

AN = 0.986; AL = 0.020

Ty 11/™MT = 0.977; £Y = 1.333

amr
From this
= . $ =~ .22
xM,II 1.620; “M,II 0.229
Uy
: = 0. H = 1.80
“M,II 0.781; a 5
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The vhase at M;r is known with that.’ (table VI.) Now the

d4ifference must be computed, over again, from the life line of
the piston for the life line up to which it is desired tu compute
the couprossion shock. If 1s desired to allow. the compression
shock to end at the life line 8, 9, here too and take the phases
in 8 and 9 (teble VI) from the preceding éxample and
= = 0.2122

Bl = My = 05
The computation of the compression shock makes use of figure M,S,
N, 11. (See fig. 16(b)). M, S, § 1ipg the life line of the compression
ghock; N, 11  is the Mach wave 1 returning from N; 11, S is the
Mech wave 2 returming from 11. To begin, an estimete of the phase

at the points NII’ 11 and SII'-is made and this is chosen egual
' drt

everywhers to the phase at MiI' In addition, an estimate for Eﬁ

[

is necegsary. Let %%': 0.230 as a start. Figure M, N, 11, S

may be drewn with these assumed values. The order in which the
polnts were nemed corresponds to the ordexr in which they cams up

in the drawing. For the positicns of N end 11 obtained thersby
the phase in front of the shock (see table VI)} or the velocity of
the life line is obtainsd by interpolation. The itsration method
begins at point 11 and it cen be showm that Hqq cen be only

glightly different from uSI because the line slemont SII’ll is
small relative to the other gimensions. The quantlty HSII can
differ from MMII only slightly, since it originates in linecar

intierpolation between M and N, and N 1iles very close to M.
Therefore Hig = By 17 is chosen a8 a starting pointv. If the
)

veloclty of the piston at 11 that is known from the boundary
conditions is used for this xll may be computed. From the

conslstency condition for the Mach wave 11,N XNII is obtained.

Now the following computation
Mgrr, = 1017 Dy = 0.988

and from the shock diagram

) e v— D AUN —
Ay = 0.020; “NII/#NI = 0.973; Eﬁf = 1.334
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fron this

f

pN,II T'-o 0773 T = 0.827; E; = 1.678

Further 1t 1s calculated that

dr
— 22 O 021
&y 7

The phase at S 1s obtained by interpolation between M and N.
With the aid of the comsistency condition for the Mach wave S,1l,ityy

is finelly obtained, end hqq from the boundary condition for

point 1l. The first lteration step ends wlth thet. It is necessary
to check whether the quantities Aqq, Wy7s )\'NII’ BT WNITY

and %‘%‘ computed agree sufficiently with the orlginal estimates.

To Increase the accuracy & sscond iteration step might be
carried out. On the basis of the values Just computed, the figure
is redesigned end the couputation is carried out in the manmer Just
described. The wvalus for Hqq Just computed is teken as a begimning.

The following calculetion is obtained for the determination of the
characteristics of ths shock

oy = 1.003; A\ = 0.967
NIT,I i

Fron the shock disgrem

- . N
A,p_N = 0-018; S'LNII/'TFN, T = 00975_; .ENE = 1.0327
! b4 I

from this

- - . . % -— L4 dJI =
Mot = 0.083; — 0.828; == 1.678; ay 0.221

o

The computetion is continued in the mexmer given until the phase
at point 11 i1s obtained, again. An additional itereticn step 1s
not necessary.
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17, SUMMARY

The differential equation system for nonstationary, one-
dinensional flows possesses three families of characteristics; the
thermodynamic end the flow phase are described by three varlables.
As & result of setting up consistency conditions for the charac-
teristics passing through the point for which the condltions have
been set up, three equatlions are obtalned from which the phase
mey be obtained. JFn that a possibility for the computation of the
flow has been glven fundementally.: The report carries out these
idess, in generel, and brings the simplifications which are possible
undsr special assumptions, as well as detalled exsmples. Compression
shocks appear, in this, as transitionel conditions in the interior
of the flow and are. likewlse investigated In detall.

Translated by Pave Feingold
National Advisory Committee
for Aeronautics _ -
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TAELE V
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Figure 1.~
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Curvilinear coordinate system ¢ , 7.
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Figure 2a.- Relation between i1 and T for COs.
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Figure 2b.- 5_% ; P‘; W as functions of the temperature for COq.
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Figure 4.- An example of the isentropic flow of an idead gas with variable
C, in a pipe of constant cross section.
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Figure 5.- An example of the isentropic flow of an ideal gas with
variable specific heat and varying pipe cross section. yt-

and A pu-chart.
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Figure 7.- Any flow of an ideal gas with variable specific heat. Treatment
of boundary conditions.
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Figure 10.- Flow of an ideal gas with constant K = 1.40b. Determination of the direction of the

Mach waves and life lines from the A p-chart.
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Figure 11.- Characteristics of compression shocks K = 1,400.
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Figure 12a.- Characteristics of compression shocks K = 1.400.
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Figure 12b.- Characieristics of compression shocks K= 1.4
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